Unit Test Mathematics 2: Computer Oriented Numerical Methods

* Required

1. Class with division *
\qquad
2. Name of the Student *
3. Roll No. *
4. The absolute error between 24 and 23.78 is *

Mark only one oval.
\qquad $-0.22$0.22
0.0222.2
5. The significant digits in $x=0.02138$ and approximate number $=0.02144$ are * Mark only one oval.
\qquad12
\qquad 34
6. If the relative error is 0.0345 ,the percentage error is * Mark only one oval.0.3453.4534.50.00345
7. In the Gauss elimination method for solving a system of linear algebraic equations, triangularzation leads to *

Mark only one oval.Diagonal matrixLower triangular matrixUpper triangular matrixSingular matrix
8. If $f(x)$ is a real continuous function in [abb], and $f(a) f(b)<0$, then for $f(x)=0$, there is (are) \qquad in the domain. *

Mark only one oval.one rootno rootatleastone rootan indeterminable number of roots
9. What is the drawback of finding inverse by adjoint method? *

Mark only one oval.
\square It needs a lot of calculationsIt gives incorrect answersIt assumes certain valuesIt is solved by approximating some values
10. Find $f(x 0, y 0)$, given that $y^{\prime}=x+y, y(0)=2$ *

Mark only one oval.
$\square$$(2,1)$2-2
11. The next iterative value of the root of $x^{\wedge} 2-4=0$ using the Newton-Raphson method, if the initial guess is 3 , is *

Mark only one oval.
\qquad 1.52.0672.1673
12. Using Euler's Method, find the value of $y(0.1)$, given that $d y / d x=1+x y$ with $y(0)=2$ * Mark only one oval.
\square 2.0
\qquad 2.11.90
13. Using Bisection method find the second iteration of the root of $x^{\wedge} 2-5=0$ between 2 and 3 *

Mark only one oval.
\square 2.52.252.125
\qquad 2.75
14. $(x f(y)-y f(x)) /(f(y)-f(x))$ is the iterative formula for *

Mark only one oval.Runge Kutta MethodTaylor's MethodBisection MethodRegula-Falsi Method
15. Which of the following method is used to solve linear equations? * Mark only one oval.
\qquad Ramanujan MethodBisection MethodTrapezoidal RuleMatrix Inversion Method
16. The root of the equation $x^{\wedge} 3+8 x-1=0$ is between *

Mark only one oval.
\square 0 and 11 and 22 and 33 and 4
17. The Newton-Raphson Method fails when *

Mark only one oval.Option $f^{\prime}(x)$ is negative$f^{\prime}(x)$ is positive$f^{\prime}(x)$ is zeronever fails
18. Every polynomial equation of the nth degree has following roots * Mark only one oval.
\qquad $n$$\mathrm{n}+1$n-1$\mathrm{n}+2$
19. The convergence of which of the following method is sensitive to starting value? * Mark only one oval.False positionGauss seidal methodBisection MethodNewton-Raphson method
20. Non square matrices do not have inverse. *

Mark only one oval.TrueFalse
21. The inverse of a matrix exists if and only if it is a non-singular matrix. *

Mark only one oval.

TrueFalse22. Which of the following is an iterative method? *

Mark only one oval.

Gauss seidalGauss EliminationCramer's RuleMatrix Inversion Method
23. Which of the following statements applies to the bisection method used for finding roots of functions? *

Mark only one oval.Converges within a few iterationsGuaranteed to work for all continuous functionsIs faster than the Newton-Raphson methodRequires that there be no error in determining the sign of the function
24. Newton-Raphson method is applicable to the solution of * Mark only one oval.Both algebraic and transcendental EquationsBoth algebraic and transcendental and also used when the roots are complexAlgebraic equations onlyTranscendental equations only
25. 2 and 4 such that $f(2)=4$ and $f(4)=16$ are appropriate initial points for the bisection method. *

Mark only one oval.TrueFalse
26. *

Mark only one oval.4.1244.12394.12384.13
27. The number of significant digits of 0.0001436 are *

Mark only one oval.
\square 34

7
\qquad 8
28.

The determinant of the matrix $\quad 5 \quad 4$ is

12

Mark only one oval.6
-64020

This content is neither created nor endorsed by Google.

> Google Forms

